Spitzer space telescope observations reveal expansion rate of the Universe


The size and age of our Universe is not only a critically important issue in cosmology, but is also among the most controversial and delicate of the cosmological questions. Infrared observations made using NASA’s Spitzer Space Telescope have now given us the most precise estimate yet of the rate at which our Universe is expanding. The key was not the discovery of a new method for measuring distance. Rather, astronomers discovered how to measure brightness more accurately. The new value for the Hubble constant, good to within three percent, is 74.3 kilometers per second per megaparsec (km/s/Mpc).

The size of the redshift-distance relationship is an expansion rate known as the Hubble parameter. (Once called the Hubble constant, we now know it changes with time.) The size of the Hubble parameter has been remarkably difficult to pin down, to the extent that as recently as 1996 a formal debate was carried out in the astronomical community over observational estimates ranging from 50 to 100 km/s/Mpc.

The new value (74.3 km/s/Mpc) for the Hubble parameter is the result of a number of Hubble space telescope measurements, now refined using the Spitzer infrared observations, and confirmed by an independent approach using the Wilkinson Microwave Anisotropy Probe (WMAP), a satellite that measures tiny anisotropies in the 3K cosmic microwave background radiation. The expansion rate is presently only 2.41 parts in a billion billion per second. This seems a tiny effect, but the Universe is a big place.


About basicrulesoflife

Year 1935. Interests: Contemporary society problems, quality of life, happiness, understanding and changing ourselves - everything based on scientific evidence.
This entry was posted in Common. Bookmark the permalink.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.