What Drives People to the Extreme

Principles of Evolutionary Psychology

We all know the adage, “If all you have is a hammer, everything looks like a nail.” I propose the following variant adage: “If all you have is a human mind, everything looks like a situation in the life of the hunter-gatherer we have forgotten we still are.” We are generally unaware of this perspective, and more important, it may not even matter if we were aware.

This new adage is the consequence of a couple of basic principles of evolutionary psychology, outlined most succinctly by University of California, Santa Barbara, professors John Tooby and Leda Cosmides in their 1997 publication, “Evolutionary Psychology: A Primer.” One is that “our neural circuits were designed by natural selection to solve problems that our ancestors faced during our species’ evolutionary history.” The other is that “Our modern skulls house a stone age mind.” From those I deduce that every modern-day problem can, at best, be reduced to one or more problems of a complexity we humans are “naturally” wired to solve. Thus, there is hardly a guarantee that the solutions found will fit the problem at hand, no matter how hard we try.

But Aren’t Humans ‘Sapiens’?

There are several objections to this conclusion: 1) The human brain has an almost infinite capacity to learn and over time will attain the capacity to deal with problems of ever-increasing complexity; 2) evolution has not stopped and will progressively cause new wirings in the human brain to whatever is needed to overcome any problems that may arise; and 3) every problem can certainly be decomposed into more simple problems until they reach a level that even a Stone Age mind can handle. Let me address these objections in reverse order, starting with the one that is least controversial:

3) It does not take much thought to accept that most relevant problems cannot be fully and faithfully decomposed into a consistent logical tree of underlying problems. The accuracy of such decomposition is limited by the specialized logic of our thinking machinery as it is dedicated to a problem set typical of an ancestral lifestyle only. The scope of this natural logic covers only a small part of the domain that mathematical logic encompasses, which in itself is not even sufficient to embrace the complexity of most issues pertinent to our modern times.

Moreover, even without these logical and neurophysiologic limitations, it is not very likely that the broken-down problems can be solved within a relevant time frame. Doing so would mean that humans could, within a couple of decades, revert to the conditions of existence under which the ancestral solutions worked, even though it took millions of years for humans to evolve. Imagine we could decompose the sudden surge of the Islamic State to problems at the individual level, such as deprivation of attachment as an infant, lack of examples of trustworthy parent figures as toddlers, underdeveloped confidence to master life enough to build a future as an adolescent, etc. Even if these are not the problems at cause, they illustrate how desperately hard each of them would be to solve.

2) Of course evolution has not stopped. We know that since the relatively recent Neolithic age, man has evolved to a lighter skin color with dwellings at higher latitudes, to preserve an active lactose digestion enzyme when growing up as a pastoralist, to deform red blood cells to resist malaria in swampy areas, and so on. Not only has the human genome evolved, but so, too, has the complex microbiome that has co-evolved with our species — that is, the fauna and flora of microbes, viruses and fungi that have called the body of inside and out, their home. And yes, the brain was also the site of numerous mutations since. But these persisting mutations may not necessarily have upgraded the brain in a direction we would interpret today as beneficial. For example, the average weight of the human brain has dropped up to double-digit percentages since the dawn of systematic agriculture. This does not help to defend the argument that the brain has become smarter since then. In addition, there are statistical trails that suggest that during some periods since the Neolithic Revolution, regional selective pressures have even increased the rate of evolution. Despite all these considerations, what is fundamental is that the time frame in which evolution has an impact is much, much longer than the rate at which Neolithic-style problems that are thrown at humankind demand solutions that have never been tried.

1) And then there is this exaltation with the prowess of the human mind. Biologically, this feature is just one of many in the broad lineup of leaves that make up the edge of progress of the tree of evolution, which covers the more than 10 million extant species. In this context, this cerebrocentric posturing makes as much sense as a giraffe bragging about its long neck. Of course, this comparison is hard to accept when we praise our kind for producing the works of Shakespeare, the construction of the Great Wall, putting man on the moon, the building of great civilizations and so on. Still, evolutionary psychologists would argue that these are mere expressions of extensions of innate abilities within limits set by the earlier natural selection process. Thus, there is nothing wrong with being proud, per se, if it were not that our appreciation seems quite biased and strongly tends to ignore or downplay the various adverse effects associated with or leading up to most of these feats.

As a matter of fact, this lack of objectivity toward man’s own accomplishments is probably another good example of those very limits.

The Human Brain’s Actual Capacities. Man has also evolved a relatively sophisticated mental model of naive mechanical physics. It is easy to argue that this would come in handy in hunting prey with, for example, bow and arrow. This “talent” easily shines through in modern times as well. For example, if asked to run the 100-meter sprint in 10 seconds flat, it is quite obvious to most that only the top athletes can reach such speed. If asked to run the same distance in 5 seconds, most would readily recognize that this does not seem to be humanly possible. In a similar vein, if asked to learn Sanskrit or to unify the theory of general relativity and the quantum field theory by tomorrow, most will quickly agree that this is not feasible even for the most intelligent among us.

But if asked whether it is within humankind’s capacity to assess the risk ramifications of very complex systems — such as the exploitation of nuclear energy, the setup of the worldwide economic and financial system, or the human effect on global warming — most would agree that these topics are, eventually, within the grasp of the human brain, if only given more time and more staff. Considering what the human brain was really programmed to handle and the bewildering intricacies of the systems involved in those examples, this faith can only be a manifestation of über hubris. The proof is relatively straightforward. I am sure most of us remember the statements of confidence before and the statements of sheer surprise during the most recent economic crisis. There is already evidence of a collective memory selective against the causes put forward for these catastrophic events and of a return of optimism toward pre-crisis levels. Many of us are not embarrassed playing the lottery or casino games despite the mathematical certainty of losing, on average. That is our ancestral brain at work. Man’s innate mental model for statistics did not require that level of sophistication. But in comparison, this is just at concerning the seemingly boundless faith we have in the human brain to deal with matters that clearly supersede its intellectual capacity by several orders of magnitude.

Let me propose a number of reasons for this phenomenon. First, the brain has evolved to understand the particular world of the hunter-gatherer. It has not developed a capacity to understand a very different world. Such a world will be understood only in terms of patterns the brain recognizes as typical for the world it does understand. The fit, if any, can only be coincidental.

Second, the brain senses its environment according to the model it has evolved to understand. The interpretation of the signals coming from the senses are, so to say, preloaded. The brain, to work at all, therefore cannot withhold judgment of interpretation while sensing. The brain must provide itself an explanation at all times, even in the most artificial and unrealistic situations. For example, the night sky is littered with innumerable stars. Some are brighter than others. The brain cannot refrain from ordering the brightest under them in patterns, drawing imaginary lines to make up Zodiac signs that refer to familiar images. The brain abhors a vacuum of explanation.

Finally, the human organism, like any organism, is driven by an “elan vital,” or a “vital force.” This is more an interpretation of the biological expression of the laws of thermodynamics that inexorably unfold in the universe than a magical form of energy. This is also not to be confused with the inborn mechanisms for fight or flight to preserve one’s life when in danger. These situations are part of the conditions of existence man is readied to deal with. The vital energy, however, is expressed in the innate expectation that man fits his conditions of existence and that man will thrive, at least, in the form of the social aggregate man typically lives in. This means that man’s biological and social needs are translated in feelings of “soon to be satisfied.” These drive human behavior to fulfill these needs until feelings of sufficient satisfaction are reached. And overall, this fulfillment is within reach, day in and day out, from season to season, from ancestors to descendants. It is cause for a general sense of optimism. The brain, however, has no means to deal adequately with living conditions that hold insufficient promise of a future for generations. A fight-or-flight reaction to danger that would ultimately become impending is likely completely inappropriate for the complexity of the real situation at hand. The brain abhors a vacuum of destiny. Depending on the particular stage of dis-ease, the brain may ignore the vacuum and whistle in the dark; it may fill in the vacuum with its own “wishful thinking”; or it may turn this vacuum to an existential fright.

The same principles are at work in dreams. One of the evolutionary psychological theories on dreams, the activation-synthesis theory, poses that “there is a randomness of dream imagery, and the randomness synthesizes dream-generated images to fit the patterns of internally generated stimulations.” In other words, emotions flood the higher neural circuits, and the neocortex scrambles to interpret the myriad pulsating trigger trails. To do that, it captures the most readily available images, related or not, from short- and longer-term memory stores and combines them as quickly as the feelings unfold into a story, any story if it must. No wonder many dreams appear weird when recounted upon waking. But this has important implications for interpreting dreams. Instead of engaging in an interminable wild-goose chase, delving for magical meanings through the most unusual combination of images and correlating them with everyday events in someone’s distant past, recent past and — the extrapolation is quickly made — future, it is much more revealing to ask about the predominant emotion during the dream and the progression of that feeling during the unfolding of the made-up story. That is the core of the dream. The story is only chatter, albeit in the foreground.

Disentangling Our Analysis of the Islamic State. When studying the Islamic State phenomenon and its ilk, the same principles — being aware of humans’ hunter-gatherer mentality, knowing that humans’ environmental sensing is preprogrammed and understanding our species’ “elan vital” — can be applied. This works on at least two levels: on the action of the individual fighters themselves but also on the reaction of the world feeling under threat. The current flood of analysis available in the global infosphere contains very erudite explanations and powerful conceptual placeholders to come to rest from the mental exhaustion of navigating the intricacies of the many possible cause-and-effect chains. But in the same vein as with the interpretation of dreams, the “primal” questions are not even close to being treated as extensively as warranted. A couple of obvious ones: To what emotion must aHomo sapiens be brought that it results in triggering one’s explosive belt or in shooting in cold blood each one of a row of otherHomo sapiens taken prisoner?

Take a paradigm such as the theory of the tectonic plates. It gives a coherent explanation for the particular position of volcanoes over the globe and of regions with a high risk of earthquakes. As useful as it is — for planning communities and evacuation routes, for example — this theory is still insufficient to precisely predict the majority of actual eruptions and tremors. Tracking the emotional magma flows underlying the Islamic State’s emergence also remains insufficient to predict the occurrence of the next outbreak of barbaric violence reliably enough to prevent it.

But the analysis of this daytime nightmare proves useful because it separates the chatter from the core and applies it at the level of the individual and of the group. At the individual level, the chatter is made up of the complex of narratives the different stakeholders, perpetrators and victims put forth to make sense of it all, each from the perspective of his or her own culture and subculture. The core consists of the conditions of existence that were so overwhelmingly discordant with those the human genome was prepared for that it triggered this series of dramatic events. The efforts to improve those conditions are much more to the point than efforts to debunk the different narratives. And the conditions that need to be improved in this case are more in the sociological tier than in the economic tier.

At the group level, the analysis remains very grainy. The collection of gut feelings of the group’s members percolates up through multiple layers of aggregation and along various sinuous paths. Even with unique mega-events like the “Je suis Charlie” march in Paris of last weekend, it is not clear if present pyroclastic clouds are cloaking the birth of a new supervolcano. Whatever that outcome, the pent up geopolitical pressures are real and will need more than an impromptu Twitter message to rally people.

In future columns I will discuss a number of those conditions of existence that are specific to the human species and are required for healthy development. These play an important role in the elaboration of moral and social rules and conventions that make up the organizational matrix of civilizations, small and grand. In the stride of the Human Genome Project, it is high time to give these principles the prominence they deserve in the redesign of our social matrix. Recycling the staggering emotional energy released in the aftermath of recently publicized savageries would be a means to mourn the dead in Paris and an excellent endeavor, lest the tragedy and its global response be in vain.

More: http://www.stratfor.com/sample/analysis/when-oil-prices-drop-some-countries-lose


About basicrulesoflife

Year 1935. Interests: Contemporary society problems, quality of life, happiness, understanding and changing ourselves - everything based on scientific evidence. Artificial Intelligence Foundation Latvia, http://www.artificialintelligence.lv Editor.
This entry was posted in All Posts, Contemporary Society Problems, Understand and Manage Ourselves. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s